Improving feature location using structural similarity and iterative graph mapping
نویسندگان
چکیده
Locating program element(s) relevant to a particular feature is an important step in efficient maintenance of a software system. The existing feature location techniques analyze each feature independently and perform a one-time analysis after being provided an initial input. As a result, these techniques are sensitive to the quality of the input. In this paper, we propose to address the above issues in feature location using an iterative context-aware approach. The underlying intuition is that features are not independent of each other, and the structure of source code resembles the structure of features. The distinguishing characteristics of the proposed approach are: (1) it takes into account the structural similarity between a feature and a program element to determine feature-element relevance; (2) it employs an iterative process to propagate the relevance of the established mappings between a feature and a program element to the neighboring features and program elements. We evaluate our approach using two different systems, DirectBank, a small-scale industry financial system, and Linux kernel, a large-scale open-source operating system. Our evaluation suggests that the proposed approach is more robust and can significantly increase the recall of feature location with only a minor decrease of precision.
منابع مشابه
Using a Novel Concept of Potential Pixel Energy for Object Tracking
Abstract In this paper, we propose a new method for kernel based object tracking which tracks the complete non rigid object. Definition the union image blob and mapping it to a new representation which we named as potential pixels matrix are the main part of tracking algorithm. The union image blob is constructed by expanding the previous object region based on the histogram feature. The pote...
متن کاملAn Iterative Algorithm for Ontology Mapping Capable of Using Training Data
We present a new iterative algorithm for ontology mapping where we combine standard string distance metrics with a structural similarity measure that is based on a vector representation. After all pairwise similarities between concepts have been calculated we apply well-known graph algorithms to obtain an optimal matching. Our algorithm is also capable of using existing mappings to a third onto...
متن کاملNIER Track: Iterative Context-Aware Feature Location
Locating the program element(s) relevant to a particular feature is an important step in efficient maintenance of a software system. The existing feature location techniques analyze each feature independently and perform a one-time analysis after being provided an initial input. As a result, these techniques are sensitive to the quality of the input, and they tend to miss the non-local interact...
متن کاملA novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...
متن کاملImproving the Efficiency of Fast Using Semantic Similarity Algorithm
A Feature selection for the high dimensional data clustering is a difficult problem because the ground truth class labels that can guide the selection are unavailable in clustering. Besides, the data may have a broad number of features and the irrelevant ones can run the clustering. A novel feature weighting scheme is proposed, in which the weight for each feature is a measure of its contributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Systems and Software
دوره 86 شماره
صفحات -
تاریخ انتشار 2013